
Identifying Significant Genes for Distinguishing Acute Leukemias

Peter Jourgensen
UCLA

1 Introduction

Classification of cancer tissue cells based on microarray ex-
pression levels has been of of great interest over the last 30
years. The struggle often resides in the fact that datasets tend
to contain few samples in comparison to their number of
features. Some approaches tend towards optimizing a model
for a given selection of features, while others tend towards
optimizing the selection of features before giving them to a
model. There are many varying approaches to selecting genes,
but a common goal remains to estimate the effect of gene
interactions on final classification. With a high feature space,
however, this results in a combinatorial explosion of interac-
tions and too small a sample space to accurately estimate the
significance of a given interaction. In this report, I discuss
a new approach to selecting significant genes based on their
interactions with others. I begin by applying an ensembling
method to a neural network base model, whereby random
subsets of training data are passed through the base model to
ultimately make predictions on a held out set. The accuracies
of the models are then transformed into weights, which can
be used to “score” each individual gene. The hypothesis is
that combinations of high scoring genes will serve as strong
predictors for cancer class. Finally, I take various selections of
the highest scoring genes and train a KNN model for predic-
tion. Using the data from “Molecular Classification of Cancer:
Class Discovery and Class Prediction by Gene Expression
Monitoring” (Golub et al. 1999), this approach is able to
achieve 97.2% classification accuracy on the collection of
patients.

2 Methodology

The data I chose to work with involves classifying human
acute leukemias from gene expression levels. It consists of 72
patients and 7,129 genes with quantified expression levels. I
began by splitting the data into a training set of 38 patients
and a testing set of the remaining 34 patients.

An ensembling method generally involves training a collec-

tion of weak learners on subsets of the data before weighing
each individual learner and having them vote on final pre-
dictions. I chose to work with a densely connected neural
network as a base model because it would be capable of cap-
turing nonlinear interactions among a multitude of features.
Each model was trained on a random selection of 30 sam-
ples and 50 genes. Overfitting is often a concern with neural
networks, however, so proper parameterization is key. First,
the number of hidden layers and the number of nodes within
each layer were kept small. I used 3 hidden layers with de-
scending dimensionalities of 25, 10, and 5 before reaching the
output layer. Second, a high dropout rate was instituted for
increased regularization. Dropout is a common tool used to re-
duce codependency among neurons and create a network with
more robust features. Finally, the number of epochs was kept
small. This means that the network gets a brief look at the data
before making its final assessment. With the comparatively
small subsets of training data and the parameterizations of the
network set to combat overfitting, each model is intended to
learn a small truth about the underlying data, with the collec-
tion of models ideally encapsulating the whole truth. More
models should provide more information to the structure of
the population, but I chose to continue with the analysis with
a total of 4,680 models trained.

The next step in the procedure was determining how to
weight each individual model. For this, a few approaches
were tested for efficacy in final class predictions. The predic-
tions of each model were labeled ALL/AML (+/- 1). These
predictions would be multiplied by their weights and summed
across all models. If the net sum was positive, that patient
would be labeled as having ALL, while if it was negative, they
would be labeled as having AML. The results and conclusions
of these tests will be discussed in the following section of
this report. The first weighting framework was to give every
model, independent of accuracy, an equal vote on final predic-
tion. The second framework used the model’s accuracy as its
weight. For the third framework, I had observed that nearly
half of all models only predicted the majority class (ALL)
for every patient, which produced an accuracy of 58.82%.

1



Therefore, I subtracted this quantity from each accuracy and
passed the result through a Rectified Linear Unit activation
function. This gave 0 weight to models below this threshold
and a linearly increasing weight to those above it. Finally,
I further developed the third set of weights by passing the
values greater than 0 through an exponential function. This
served to give slightly higher weight to more accurate mod-
els when compared with its linear counterpart. Ultimately,
the fourth set of weights was chosen because it produced the
highest overall accuracy.

The next step involved scoring the individual genes based
on these weights. If a gene was used in a model, that model’s
weight would be added to the gene’s score. The gene’s score
would be averaged across the number of times it appeared to
normalize for different number of appearances. Only genes
with scores significantly greater than 0 (p < 0.05) would be
considered. Finally, the genes were sorted descending by
score.

To test the efficacy of the scoring system, I simply took
a KNN model and performed a grid search over the number
of highest scoring genes and the number of neighbors in the
model to optimize the parameters. 5-fold cross validation on
the training set was used to measure model performance. I
then tested the parameterization with the highest cross valida-
tion score on a held out testing set and the entirety of the data
as well.

3 Results

As previously mentioned, I trained a total of 4,680 individual
neural networks. With 50 genes selected at random for each
model, each gene appeared in 33 distinct models on average.
In regards to the performance of the individual models, the
majority performed poorly by either only predicting the ma-
jority class or seemingly guessing at random. This was not a
surprise, however, given that the majority of genes play lim-
ited role in distinguishing between acute leukemias and that
the individual models were not optimized for performance. In
summary, 49% predicted the majority class exclusively and
29% performed worse, leaving 22% 1 that appeared to have
insight into the structure of the data.

The next step involved assessing which set of weights to
choose for scoring the genes. This was done by comparing
the ensemble accuracy of the 4 weighting options. Giving
equal weights to each model resulted in always predicting
the majority class, resulting in an accuracy of 58.82%. The
outcome was the same for weighting each model by its ac-
curacy. The next system involved only considering models
above that threshold, which resulted in an accuracy of 82.21%.
And finally, these accuracies above the threshold were passed
through an exponential function to give slightly more bias
to higher performing models. This resulted in an ensemble

11005 total models

Figure 1: Heatmap illustrating correlations among 50 highest
scoring genes

accuracy of 85.29%. This would be the final selection to be
used for gene scoring.

I then followed the previously discussed procedure for
scoring the individual genes and limited further analysis to
the top 50 genes. Among these genes, only 7 were among
the top 50 most correlated with the class distinction. Further,
Figure 1 is a heatmap of the correlations between each of the
top 50 highest scoring genes. While some of the genes appear
coregulated, most only share weak relationships. This is a
key result with respect to feature selection. Highly correlated
features, while they all may be good individual predictors of a
target class, do not provide additional information when used
in combination. Weakly correlated features provide broader
insight into the data when used together. However, this is
contingent upon their efficacy in predicting a target class.

To test the efficacy of the gene scoring system, I optimized
a KNN model for both the number of highest scoring genes
to use and the number of neighbors to compare. After a grid
search of the parameters with cross validation serving as the
performance metric, it was determined that using the combi-
nation of 2 neighbors and the top 50 genes was optimal. When
tested on a held out set, it achieved an accuracy of 94.1% 2. It
predicted the training set perfectly, giving an overall accuracy
of 97.2% 3.

4 Conclusion

The success of the predictions of the KNN model justifies the
use of bagging neural networks for feature selection. While
assessing significance of singular genes via correlation or
information gain has seen some success, cancer classification
models have seen improvement when selecting features based
on gene pairs or even triplets. The method proposed here does
not directly score gene interactions, but it does effectively
score each gene for its significance when interacting with

232 correct out of 34
370 correct out of 72

2



other genes. Genes that score highly fall into 2 categories:
They are either strong individual predictors or they are weak,
but provide key additional insight when combined with other
genes. For future research, optimizing the neural networks
and training more of them would be beneficial in improving
the quality of the gene scores. It may also be of value to take
a subselection of the highest scoring genes, compute their
products for each pair and follow a similar analysis with the
new set of features.

References

[1] Zhuo Sheng Boosting and Bagging Neural Networks with
Applications to Financial Time Series. 2006.

[2] Chopra et al. Improving Cancer Clasification Accuracy
using Gene Pairs 2010.

[3] Zhang et al. Improving Accuracy for Cancer Classifica-
tion with a new Algorithm for Gene Selection 2012.

[4] Golub et al. Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression Mon-

itoring 1999.

3


	Introduction
	Methodology
	Results
	Conclusion

