
Assessing Distributed Content Delivery via Content and Consumer Clustering

Josh Kimmel
UCLA, Computer Science

Peter Jourgensen
UCLA, Computer Science

Abstract
With the explosion of media streaming services such as
Netflix, a major issue in the quality of content delivery
is bottlenecking at the content delivery nodes deployed
across Content Delivery Networks ("CDN’s"). Our aim
is to assess the feasibility of constraining the storage re-
quirements of individual content delivery nodes in the
CDN by fixing the genres of the content each one supplies.
If the genre groups are sufficiently unique and content is
well-distributed across these groups, the storage required
of individual nodes can be constrained in terms of its rate
of growth. This can help financially justify the deploy-
ment of more nodes in the network, thereby reducing bot-
tlenecking. Furthermore, if the genre distribution is such
that consumer genre preferences can be mapped close
to injectively on to it, applying such a mapping when
serving consumer requests would help distribute the load
across more servers, further reducing bottlenecking. The
reduction of bottlenecking as described above would re-
sult in a better and more consistent end user experience
for streaming services. Our results indicate that such
groupings can lead to more favorable constraints for con-
tent delivery node resources.

1 Introduction

With the rise of media streaming services such as Netflix, the
landscape for how users consume digital content (movies, TV
shows, etc.) has changed dramatically in recent years. Many
major media streaming service providers utilize a Content
Delivery Network (CDN) to serve requests from users for
content. CDN’s are designed to help ease the load of requests
for content by distributing the location of the provider of this
content geographically [8]. A CDN typically consists of many
content servers to which a given user can be directed to obtain
his/her requested content. The direction is typically performed
by some master software controller in a Cloud environment.

However, as the demand for content continues to grow at
an exponential rate, a major limitation to CDN’s today is

their ability to deal effectively with bottlenecks at the content
delivery servers [1]. Bottlenecks ultimately result in poor user
experiences such as buffering, lags, and crashes.

The obvious solution to this problem is to expand the net-
work by adding more content delivery servers - each servicing
a more confined geographic region. However, the feasibility
of such a solution is severely limited by the cost of deploy-
ment and maintenance of these additional servers. Especially
given the extremely large base of content that must be deliv-
ered, each server in the network must have a storage system
with a high and very scalable capacity.

However, this problem can in theory be mitigated by taking
a slightly different approach. Instead of focusing on geo-
graphic location as the major decision factor in request rout-
ing, our proposal is to focus on content genre relative to re-
questor genre preferences.

There has been some initial thought and exploration into
quantifying consumer preferences [7] as well as clustering
media content [10], but there is no well-known technique (or
even attempt1) at combining the two in the context of content
delivery.

Our hypothesis is that content genres can be clustered in
such a way that maps bijectively2 to clusters of consumers in
terms of the content genres that they prefer. A large enough
variation in content genre clusters could help impose stor-
age constraints3 on the servers that deliver content of the
given genre. Furthermore, such a mapping could help better
distribute requests for content across the network. Both conse-
quences would ultimately result in a better user experience for
such prevalent media streaming applications which, in such a
competitive market, could make a huge difference for these
businesses.

1At least per the authors’ research.
2Or at least close thereto.
3Namely, on the expected growth rate of storage capacity. This assumes

that content is well-distributed overall across these clusters.

1



2 Clustering Techniques

As the primary means for our analysis is clustering of both
content by genre and consumer by genre preferences, the
clustering algorithm we use has major implications towards
our ultimate conclusions. For this reason, we spent quite some
time assessing which clustering algorithms suited our research
best.

Our desired qualities out of a clustering algorithm are:

• Either yields a configurable number of clusters or tends
to yield a large number of clusters. This is because more
clusters ideally implies less content per cluster and fewer
consumer requests mapped to a given cluster.

• Tends to yield clusters that are close in size. This is
because, assuming our data set is representative, small
clusters would under-utilize storage and large cluster
would over-utilize storage, rendering our solution less
cost effective.

• Lower asymptotic complexity - especially in the size of
the data set. We are working with very large data sets on
modest machines and need to run many simulations.

In examining various popular clustering algorithms, we
concluded that Mean-Shift [2], Affinity Propagation [11], and
Agglomerative Clustering [4] are not scalable enough. Spec-
tral Clustering tends to yield too few clusters for our pur-
poses [5]. DBSCAN tends to yield uneven cluster sizes [3].
This left us with K-Means and, more generally, Gaussian
Mixtures.

Given the relative simplicity, configurability, and suitability
to our needs of K-Means clustering, we decided to imple-
ment this algorithm for our research. The implementation of
our K-Means library can be found at https://github.com/
joshkimmel16/ContentCluster.

We chose to implement our own K-Means clustering li-
brary4 because we wanted to play with various formats for
the input data and thus various interpretations of the distance
between two points and the mean of a set of points. Our im-
plementation allows for generic functions to be plugged in
that best suit the structure of the input data set.

2.1 K-Means Clustering Considerations

One major factor in both the performance and ultimate re-
sults for K-Means clustering is the formation of an initial
partition on the data set. Though there has been consider-
able research [9] into the optimization of initial partitions, we
opted to use a simple random partitioning technique as none
seemed to particularly suit our experiment.

4As opposed to using an existing implementation.

As randomness can inherently result in different outcomes
across executions, our clustering experiments were run multi-
ple times to ensure that the results were not drastically differ-
ent.

3 Content Clustering by Genre

The source data set of the content clustering
portion of our research is from themoviedb.org
(https://www.kaggle.com/stephanerappeneau/
350-000-movies-from-themoviedborg). This
data set provides one file in particular -
AllMoviesDetailsCleaned.csv - that tags each of
the 350,0005 movies with a subset of a predefined set of
genres. These genres are: Drama, Crime, Comedy, Action,
Thriller, Documentary, Adventure, Science Fiction,
Animation, Family, Romance, Mystery, Music, Horror,
Fantasy, War, History, Western, Foreign, TV Movie.

3.1 Pre-Processing

In our pre-processing step, we use a Python script to generate
the ultimate data set that is fed into the clustering algorithm.
This script examines each movie and outputs an array of ob-
jects containing: MovieID, MovieName, GenreBitVector.
The GenreBitVector is an array of bits where biti is as-
serted if and only if the given movie has been tagged with the
ith genre per the ordering of genres above.

3.2 Distance Functions

We have explored several possible definitions of the "distance"
between two points in the data set. Each of these definitions
is elaborated upon below:

DirectCompare Takes a scalar parameter λ. Compares the
input GenreBitVectors of each data point bit-wise and
returns ∑MismatchedBits λ.

DirectDiff Takes a scalar parameter λ. Compares the
input GenreBitVectors of each data point bit-
wise and returns λ × ∑i |GenreBitVector0[i] −
GenreBitVector1[i]|.

Our analysis concluded that DirectDiff lends itself bet-
ter6 to computations pertaining to the mean of a subset of
data points with the given structure and thus we used this
definition of distance for clustering.

5This is an approximation.
6Means are better suited to have ranges of values in [0,1] making

DirectCompare nonsensical when evaluating the distance between a point
and a mean.

2

https://github.com/joshkimmel16/ContentCluster
https://github.com/joshkimmel16/ContentCluster
https://www.kaggle.com/stephanerappeneau/350-000-movies-from-themoviedborg
https://www.kaggle.com/stephanerappeneau/350-000-movies-from-themoviedborg


3.3 Mean Functions
There was only one function that we deemed appropriate for
the computation of the mean of a subset of data points in the
content data set. This function is described below:

ArithMean Computes the arithmetic means of each data
point bit-wise and returns a vector of these means.
The arithmetic mean for the ith bit is defined as:
∑

j=#o f DataPoints
j=0 GenreBitVector j [i]

#o f DataPoints .

3.4 Error Functions
In computing the overall error associated with assigning a
given data point to a given cluster, there were 3 major factors
that we tried to incorporate:

• Minimal aggregate distance of points within a cluster to
the cluster’s mean. In the limit, this implies that movies
within a cluster are noticeably similar.

• Maximal aggregate distance of points within a cluster to
the means of other clusters. In the limit, this implies that
movies in different clusters are noticeably different.

• Minimal variance in the size of each cluster from the
ideal cluster size. The ideal cluster size is defined as:
#o f DataPoints

k . In the ideal cluster size scenario, assuming
our data set is representative of all content, this implies
that each cluster requires the same amount of storage for
its content and total required storage is evenly distributed
across the clusters.

We explored several possible functions:

IntraErrorOnly Selects the cluster that minimizes the dis-
tance7 between the given point to that cluster’s mean8.

IntraClusterSize Selects the cluster that minimizes
IntraErrorOnly + λ × ClusterSizePenalty.
ClusterSizePenalty penalizes clusters that de-
viate in size from the ideal cluster size.

The IntraErrorOnly component of the error functions,
by construction of the K-Means algorithm, accomplishes our
goals of minimizing aggregate error within clusters and maxi-
mizing error between clusters [6]. The ClusterSizePenalty
component attempts to bias clusters towards their ideal cluster
sizes.

3.4.1 Cluster Size Penalty Functions

We explored two functions for computing the
ClusterSizePenalty component of the error functions:

7Defined in section 3.2
8Defined in section 3.3

SimpleDiff Returns |ActualClusterSize - IdealClusterSize|.

GaussianDiff Returns 1
P(ActualClusterSize) where the distribu-

tion is a Gaussian of mean IdealClusterSize and vari-
ance (k−1)n2

k2
9.

Although GaussianDiff has a better biasing effect given
its aversion to cluster sizes that deviate greatly from the ideal
cluster size, with a small enough dampening factor λ, the
difference between the two functions becomes minor. Further-
more, GaussianDiff is considerably more computationally
expensive. For these reasons, we chose to use SimpleDiff.

4 Consumer Clustering by Genre Preferences

The source data set of the consumer clustering portion
of our research is from the Netflix Prize Competition
previously hosted on Kaggle (https://www.kaggle.com/
netflix-inc/netflix-prize-data). This data set pro-
vides four files containing user ratings (1-5) for unique movies
or shows and one file that maps movie identification codes to
specific titles and years of release. In total, this data contains
information for over 450,000 users and 17,000 titles, resulting
in roughly 100,000,00010 individual entries.

4.1 Pre-Processing

In our pre-processing step for clustering consumers by genre
preferences, we must develop a metric for each consumer’s
aggregate score of each genre.

4.1.1 Mapping Genres to MovieIDs

First, we had to determine the genres of each movie in the
data set. The Netflix data contains no information on genres
of each movie, so these had to be mapped from our previous
data set used for content clustering.

We began by performing an inner join on the two data sets,
whereby the movie titles of the Netflix data was used as the
primary key and the movie titles of the themoviedb.org data
was used as the foreign key. Next, release year, present in both
data sets, was leveraged to confirm accurate matching. Finally,
duplicate entries and entries that contained no information
on genres were removed. This resulted in a master data set
containing unique mappings for Netflix movie identification
codes and their corresponding genres11. Only these movies
would be considered for further analysis.

9This can be derived by setting E[x2] = n2

k where n is the number of data
points

10These are approximations.
11Results in 8,429 movies

3

https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data


4.1.2 Consumer Scoring of Genres

For the next step of scoring genes on an individual consumer
basis, we developed a Python script to read in the data and
determine all of the movies a consumer had seen and their
corresponding ratings. For improved computational time and
data quality, only users with more than 150 movies seen and
rated were considered for further analysis12. The following
procedure was then applied to transform the consumer ratings
on an individual basis:

1. Normalize. This adjusts for consumers having different
relative rating systems and puts all of the ratings on the
same scale. Outliers13 were then removed.

2. Exponentiate. This not only transforms the ratings to
all be positive, but also means that higher ratings have
increased variance. When applying KMeans clustering,
this results in consumers being more likely to be clus-
tered by their interests than their dislikes.

3. Scale. Divide ratings by number of movies consumer
has rated. When the scores are later summed, this puts
the final sums on the same scale for every consumer.

Finally, we iterated through every consumer and every
movie and added the transformed rating to each of the corre-
sponding genres. This ultimately results in a data set contain-
ing genre scores for each consumer that can then be used to
cluster consumers by their genre preferences.

4.2 Distance Functions

We explored two additional distance functions for our K-
Means clustering of consumers because of the different struc-
ture of its data. These are elaborated upon below:

SquareDiff Takes a scalar parameter λ. Compares the
input GenreScoreVectors of each data point bit-
wise and returns λ × ∑i(GenreScoreVector0[i] −
GenreScoreVector1[i])2.

CubicDiff Takes a scalar parameter λ. Compares the
input GenreScoreVectors of each data point bit-
wise and returns λ × ∑i |GenreScoreVector0[i] −
GenreScoreVector1[i]|3.

We found CubicDiff to over penalize points that were
far away from each other, resulting in clusters that did not
generalize well. Therefore, we chose to continue with our
results from using SquareDiff.

12Results in 158,979 consumers
13Corresponds to normalized ratings with values greater than 2

4.3 Mean Functions

The ArithMean14 was, likewise, the only function that we
deemed appropriate for the computation of the mean of a
subset of data points in the consumer data set.

4.4 Error Functions

IntraErrorOnly was deemed appropriate for the optimiza-
tion of the individual clusters.

Penalizing the differences in cluster sizes did not prove to
be necessary as the clusters were fairly distributed for each
k. In a real world scenario, this plays a critical role. The dis-
tribution of content, whether it be through targeted servers or
taken to the extreme with peer-to-peer sharing, is constrained
by congestion and cost. On the upper end, large consumer
clusters results in higher traffic to the distributed servers, thus
re-generating the same problems that are currently facing the
industry. On the lower end, small consumer clusters become
costly to serve on a per capita basis. Thus, we penalize cluster
size extremes in an attempt to mitigate these issues.

5 Mapping of Consumer Clusters to Content
Clusters

Once all of the clustering results have been generated both for
customer genre preferences and movie genres, the final step
in our analysis is to find the optimal mapping of customer
clusters to movie clusters for some pair of clustering results.

Given the relatively small size of the result set for each
clustering simulation15 and the relatively small size of clusters
per result 16, we decided to take a brute-force approach to the
evaluation of mappings.

Namely, for each clustering result for customers and each
clustering result for movies (pairwise), we found the movie
cluster that minimized a cost function that evaluates the "dis-
tance" between the given movie cluster and each customer
cluster. The normalized17 sum of the "best" mappings of each
customer cluster to movie cluster is classified as the total error
for the given pair of clustering results. The minimal total error
across all possible pairs of clustering results is what we define
as the optimal mapping.

5.1 Mapping Cost Functions

Given the fact that both customer and movie cluster means
are of the same format, namely a vector of real values in [0,1]
for each of the predefined genres, we determined that a simple

14Defined in section 3.3
15Determined by the range of k values used.
16Also determined by the range of k values used.
17Normalization is based on number of customer clusters. Otherwise, the

sum would favor smaller amounts of clusters.

4



difference function would suffice. This function is described
below:

DirectDiff Takes a scalar parameter λ. Compares the in-
put customer and movie cluster MeanVectors bit-
wise and returns λ × ∑i |MeanVectorconsumer[i] −
MeanVectormovie[i]|.

For a given pair of clustering results (one consumer, one
movie), each consumer cluster is mapped to its best movie
cluster by finding the movie cluster whose mean vector, when
paired with the given consumer cluster mean vector, mini-
mizes the DirectDiff cost function.

Once the best movie cluster has been identified for each
customer cluster, the overall cost of the given clustering result
pair is defined as the sum of the outputs of DirectDiff for
each best mapping. To ensure that clustering result pair costs
are comparable, this aggregate cost is normalized by dividing
out the number of consumer clusters (k-value) for the given
pair.

The optimal clustering result pair is defined as the pair
whose normalized cost is minimal.

6 Results

The sections below outline the results we obtained through
our initial experiments. It is worth noting that several more
experiments are planned to be conducted in the future.

6.1 Movie Clustering Results
For movie clustering, two primary experiments were con-
ducted:

• K-Means clustering for k=[2,20] where the distance
function used was DirectDiff with λ = 1, the mean
function used was ArithMean and the error function
used was IntraErrorOnly.

• K-Means clustering for k=[2,20] where the distance
function used was DirectDiff with λ = 1, the mean
function used was ArithMean and the error function
used was IntraClusterSize with λ = 1.

See https://drive.google.com/drive/u/0/
folders/1IaQjcQrhl9kTY-bfPQ1j_YiilQMwE4bu for
the raw result .json files.

6.2 Consumer Clustering Results
For consumer clustering, only one primary experiment was
conducted:

• K-Means clustering for k=[4,20] where the distance
function used was SquareDiff with λ = 1, the mean
function used was ArithMean and the error function
used was IntraErrorOnly.

Figure 1: Experiment 1 results on top, Experiment 2 results
on bottom

6.3 Cluster Mapping Results
For cluster mapping, two primary experiments were con-
ducted:

• Using customer clustering results of experiment 1 (see
6.2) and using the the movie clustering results of ex-
periment 1 (see 6.1). Using the mapping cost function
DirectDiff with λ = 1.

• Using customer clustering results of experiment 1 (see
6.2) and using the the movie clustering results of ex-
periment 2 (see 6.1). Using the mapping cost function
DirectDiff with λ = 1.

See Figure (1) for the "best" mappings computed in each
experiment.

7 Analysis

7.1 Movie Clustering
The goal in movie clustering, independent of the optimal
mapping to consumer clusters, was to assess the feasibility
of grouping quantifiably "similar" media content such that
each group is similar enough that it would be reasonable to
expect that only a subset of consumers would be actively
requesting its content while at the same time being specific
enough that the physical storage required for the given cluster
can be reasonably constrained.

The logical metric to assess the similarity of content within
a cluster is the final aggregate error upon convergence of K-
Means. The smaller this aggregate error is, the better the mean
of the given cluster characterizes its members and it can thus
be inferred that the members are similar to the mean and, by

5

https://drive.google.com/drive/u/0/folders/1IaQjcQrhl9kTY-bfPQ1j_YiilQMwE4bu
https://drive.google.com/drive/u/0/folders/1IaQjcQrhl9kTY-bfPQ1j_YiilQMwE4bu


transitivity, each other. Per the results of both clustering ex-
periments, as one would expect, the nominal aggregate errors
and variances within clusters decreased as k increased. It is
worth noting that average error within clusters was consis-
tently higher in the IntraAndClusterSize experiment, as
might be expected when penalizing clusters of certain sizes.
This is a positive trend for the hypothesis, but, without fur-
ther experimentation and labeling, it is difficult to qualify the
nominal error values in terms of a true similarity rating.

The logical metric to assess the specificity of content within
a cluster is to look at the average "distance" between the
means of clusters. The bigger this difference is, the more
dissimilar the content in each cluster is - which effectively
implies that clusters are increasingly specific. Once again, per
the results of both clustering experiments and as expected
by the construction of K-Means, the average distance and
variance across clusters increased as k increased. It is worth
noting that average error across cluster means was consistently
lower in the IntraAndClusterSize experiment, as might be
expected when penalizing clusters of certain sizes. This is
again a positive trend for the hypothesis.

Finally, to help understand the physical storage constraints
that can be imposed on a given cluster, the distribution of clus-
ters sizes can be analyzed. Particularly large or small clusters,
assuming the movie data set is representative of the entire
population of content, would not permit very tight bounds on
the physical storage required per cluster. In contrast, uniform
cluster sizes would yield the optimal upper bound on storage.
In each experiment, as expected, the average cluster size de-
creased as k increased. However, the IntraAndClusterSize
experiment, given its penalty imposed on large and small clus-
ters, yielded lower cluster size variances for all k.

In general, the most troubling trend is the existence of
outliers in cluster sizes across all k in both experiments. There
were always at least some clusters significantly smaller and
significantly larger than the average cluster size. It is thus
difficult to confidently constrain the physical storage required
for a given cluster without further analysis.

7.2 Consumer Clustering

The goal with the consumer clustering portion of this
research was to determine whether or not there was enough
variability and balance in consumer interests to form distinct
"communities" of consumers that in the extreme may operate
as a peer-to-peer network to share content with one another.
To function in the real world, these communities must be
large enough to locally host a significant amount of content,
but small enough to be practically managed by a controller to
avoid congestion and security concerns.

Following the same reasoning discussed in the analysis
of movie clustering, the final aggregate error was used to
assess the clustering specificity. As would be expected, the

total aggregate error decreased as the number of clusters,
k, increased. It is worth mentioning that, traditionally, the
optimal k for K-means clustering is chosen where the error
begins decreasing at a decreasing rate18. While we were sure
to include this "optimal" point in the ranges of both clustering
experiments, taking the corresponding k values may not
be the optimal mapping for this research. This is because
increased specificity in clustering may reduce the mapping
cost. Therefore, the entire range of k’s were analyzed during
the mapping.

Next, the distribution of cluster sizes for each k value can
be analyzed to assess the feasibility of real world applica-
tion. Cluster sizes deviating from the expected cluster size19

were not penalized for consumer clustering because it was
deemed unnecessary given the balance in the results of using
IntraErrorOnly. Only at k=20 was a single outlier detected
among cluster sizes. This consistent uniformity is reassuring
and suggests a certain amount of homogeneity in consumer
preferences. These bounds ensure that the potential peer-to-
peer networks have enough collective storage capacity, but
are not so large that they are unmanageable.

7.3 Cluster Mapping

The goal in cluster mapping is to assess how well requests
across consumer clusters would be distributed across content
clusters. In the ideal scenario, fixing the numbers of both
consumer and content clusters, there would be a one-to-one
mapping (or as close as the numbers of clusters can get).

In experiment one, the optimal cluster mapping was k=20
for consumers and k=17 for content. In experiment two, the
optimal cluster mapping was k=20 for consumers and k=4 for
content.

In both experiments, the trend across consumer cluster num-
bers was that more clusters yielded lesser (normalized) map-
ping error. This result is promising as the more consumer
clusters that exist, fixing the average cluster size across con-
sumer clusters, the more constrained the number of expected
requests per cluster per unit time can be. Tighter upper bounds
favor our flavor of a distributed network.

The optimal cluster size for content clusters across experi-
ments varied greatly and there was no visible trend. It cannot
be stated with confidence that a one-to-one mapping is fa-
vored, as there was only one experiment in which a (close to)
one-to-one mapping was optimal. Further experiments would
need to be conducted to create a mapping data set that can be
properly analyzed.

18Commonly referred to as the "Elbow" point
19Total Samples / k

6



8 Conclusions

Content delivery is exponentially growing as both the quan-
tity of content and resolution that it is developed in continue
to grow at increasing rates. The initial goal of the Content
Delivery Network was to distribute the data storage and de-
livery away from a central location to reduce the number of
requests and avoid having a single point of failure. The CDN’s
themselves, however, are beginning to face a future where the
demand for content outweighs their distribution.

In this paper, we presented a solution to combat this im-
balance by taking the distribution to the extreme with a peer-
to-peer content sharing network or similar architecture. We
first demonstrated that content can be clustered by genre cate-
gories and consumers can be clustered by genre preferences.
We then mapped the consumer clusters to content clusters to
find the pairings with the least distance between them.

Increased distribution of CDN’s is still a relatively new area
of research, but is one that is growing more necessary each
day. While we addressed this problem through the lens of
Netflix user preferences and movie genres, it could easily gen-
eralize to other forms of content delivery as well, be it music
or other streaming services. This paper proposed a singular
solution, but we recognize the opportunity and encourage the
exploration for novel approaches and points of optimization.

In the future, we hope to continue to improve our frame-
work in terms of cost, mean, and error functions as well as
their optimal parameters. The most important next steps are to
continue to generate and compare results under various con-
ditions to better understand the high-level structure of both
media content and consumer content preferences.

References

[1] Akamai. Live streaming solution brief. 2018.

[2] S. Craciun, G. Wang, A. D. George, H. Lam, and J. C.
Principe. A scalable rc architecture for mean-shift clus-
tering. In 2013 IEEE 24th International Conference on
Application-Specific Systems, Architectures and Proces-
sors, pages 370–374, June 2013.

[3] Levent Ertöz, Michael Steinbach, and Vipin Kumar.
Finding clusters of different sizes, shapes, and densi-
ties in noisy, high dimensional data. In Proceedings
of the 2003 SIAM International Conference on Data
Mining, pages 47–58, May 2003.

[4] J. Handl and J. Knowles. Improvements to the scalability
of multiobjective clustering. In 2005 IEEE Congress on
Evolutionary Computation, volume 3, pages 2372–2379,
September 2005.

[5] Ling Huang, Donghui Yan, Nina Taft, and Michael I.
Jordan. Spectral clustering with perturbed data. In
Advances in Neural Information Processing Systems 21,
pages 705–712. December 2009.

[6] Zhexue Huang. Extensions to the k-means algorithm
for clustering large data sets with categorical values.
In Data Mining and Knowledge Discovery, volume 2,
pages 283–304. September 1998.

[7] Oscar Luaces, Jorge Díez, Thorsten Joachims, and An-
tonio Bahamonde. Mapping preferences into euclidean
space. In Expert Systems with Applications, volume 42,
pages 8588 – 8596. December 2015.

[8] Netflix. Open connect overview. 2016.

[9] Ting Su and Jennifer G. Dy. A deterministic method for
initializing k-means clustering. In 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence,
pages 784–786. November 2004.

[10] Lyle H. Ungar and Dean P. Foster. Clustering methods
for collaborative filtering. In AAAI Technical Report,
pages 114 – 129. August 1998.

[11] Xiangliang Zhang, Cyril Furtlehner, and Michèle Sebag.
Data streaming with affinity propagation. In Machine
Learning and Knowledge Discovery in Databases, pages

628–643, September 2008.

7


	Introduction
	Clustering Techniques
	K-Means Clustering Considerations

	Content Clustering by Genre
	Pre-Processing
	Distance Functions
	Mean Functions
	Error Functions
	Cluster Size Penalty Functions


	Consumer Clustering by Genre Preferences
	Pre-Processing
	Mapping Genres to MovieIDs
	Consumer Scoring of Genres

	Distance Functions
	Mean Functions
	Error Functions

	Mapping of Consumer Clusters to Content Clusters
	Mapping Cost Functions

	Results
	Movie Clustering Results
	Consumer Clustering Results
	Cluster Mapping Results

	Analysis
	Movie Clustering
	Consumer Clustering
	Cluster Mapping

	Conclusions

